设函数 f x = 2 x + 1 + x - 1 .
(1)画出 的图像;
(2)当 x ∈ [ 0 , + ∞ ) , f x ≤ ax + b ,求 a + b 的最小值.
(本小题满分14分)已知函数,数列满足,;数列的前项和为,数列的前项积为,. (1)求证:; (2)求证:.
(本小题满分14分)已知函数, (1)求的单调区间; (2)若时, 恒成立,求实数的取值范围.
(本小题满分14分)在平面直角坐标系中,已知两圆:和:,动圆在内部且和圆相内切且和圆相外切,动圆圆心的轨迹为. (1)求的标准方程; (2)点为上一动点,点为坐标原点,曲线的右焦点为,求的最小值
(本小题满分13分)矩形中,,是中点,沿将折起到的位置,使,分别是中点. (1)求证:⊥; (2)设,求四棱锥的体积.
(本小题满分13分)一车间生产A, B, C三种样式的LED节能灯,每种样式均有10W和30W两种型号,某天的产量如右表(单位:个): 按样式分层抽样的方法在这个月生产的灯泡中抽取100个,其中有A样式灯泡25个。 (1)求z的值; (2)用分层抽样的方法在A样式灯泡中抽取一个容量为5的样本,从这个样本中任取2个灯泡,求至少有1个10W的概率.