已知斜率为 k 的直线 l 与椭圆 C : x 2 4 + y 2 3 = 1 交于 A , B 两点.线段 AB 的中点为 M ( 1 , m ) ( m > 0 ) .
(1)证明: k < - 1 2 ;
(2)设 F 为 C 的右焦点, P 为 C 上一点,且 FP ⃑ + FA ⃑ + FB ⃑ = 0 ⃑ .证明: 2 FP ⃑ = FA ⃑ + FB ⃑ .
如图中标出的直线的倾斜角对不对,如果不对,违背了定义中的哪一条?
若三点A(2,-3)、B(4,3)、C(5,k)在同一条直线上,请求出k的取值.
圆内有一点,AB为过点且倾斜角为α的弦, (1)当时,求AB的长; (2)当弦AB被点平分时,写出直线AB 的方程。
甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,速度不得超过50千米/ 小时。已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v千米/小时的平方成正比,比例系数为0.02;固定部分为50元/小时. (1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?
的三个顶点是,,. (1)求BC边的高所在直线方程;(2)求的面积S.