如图,已知椭圆:的离心率为,以椭圆的左顶点为圆心作圆:,设圆与椭圆交于点与点.(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程;(3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点,为坐标原点,求证:为定值.
(本小题满分13分) (1)若(),试求实数的范围; (2)设实数,函数, 试求函数的值域。
(本小题满分12分) 已知不等式组所表示的平面区域为D,记D内的整点个数为(整点即横坐标和纵坐标均为整数的点). (1)数列的通项公式; (2)若,记,求证:.
(本小题满分12分) 如左图示,在四棱锥A-BHCD中,AH⊥面BHCD,此棱锥的三视图如下: (1)求二面角B-AC-D的大小; (2)在线段AC上是否存在一点E,使ED与面BCD成45°角?若存在,确定E的位置;若不存在,说明理由。
(本小题满分12分) 已知:,,函数. (1)化简的解析式,并求函数的单调递减区间; (2)在△ABC中,分别是角A,B,C的对边,已知,△ABC的面积为,求的值.
(本小题满分12分) 已知函数在点x=1处的切线与直线垂直,且f(-1)=0,求函数f(x)在区间[0,3]上的最小值。