设 n为正整数,集合 A= { α | α = t 1 , t 2 , ⋯ , t n , t k ∈ 0 , 1 , k = 1 , 2 , ⋯ , n } .对于集合 A中的任意元素 α = x 1 , x 2 , ⋯ , x n 和 β = y 1 , y 2 , ⋯ , y n ,记
M( α , β )= 1 2 x 1 + y 1 - x 1 - y 1 + x 2 + y 2 - x 2 - y 2 + ⋯ + x n + y n - x n - y n .
(Ⅰ)当 n=3时,若 α = 1 , 1 , 0 , β = 0 , 1 , 1 ,求 M( α , α )和 M( α , β )的值;
(Ⅱ)当 n=4时,设 B是 A的子集,且满足:对于 B中的任意元素 α , β ,当 α , β 相同时, M( α , β )是奇数;当 α , β 不同时, M( α , β )是偶数.求集合 B中元素个数的最大值;
(Ⅲ)给定不小于2的 n,设 B是 A的子集,且满足:对于 B中的任意两个不同的元素 α , β , M( α , β )=0.写出一个集合 B,使其元素个数最多,并说明理由.
如图,已知直线()与抛物线:和圆:都相切,是的焦点. (Ⅰ)求与的值; (Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上; (Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
已知函数 (Ⅰ)若函数恰好有两个不同的零点,求的值。 (Ⅱ)若函数的图象与直线相切,求的值及相应的切点坐标。
已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为 (Ⅰ)求椭圆的标准方程; (Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。
已知函数f(x)=cos(2x+)+-+sinx·cosx ⑴ 求函数f(x)的单调减区间;⑵ 若xÎ[0,],求f(x)的最值; ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
在△ABC中,a、b、c分别是角A、B、C的对边,cosB=. ⑴ 若cosA=-,求cosC的值;⑵ 若AC=,BC=5,求△ABC的面积.