设 n为正整数,集合 A= { α | α = t 1 , t 2 , ⋯ , t n , t k ∈ 0 , 1 , k = 1 , 2 , ⋯ , n } .对于集合 A中的任意元素 α = x 1 , x 2 , ⋯ , x n 和 β = y 1 , y 2 , ⋯ , y n ,记
M( α , β )= 1 2 x 1 + y 1 - x 1 - y 1 + x 2 + y 2 - x 2 - y 2 + ⋯ + x n + y n - x n - y n .
(Ⅰ)当 n=3时,若 α = 1 , 1 , 0 , β = 0 , 1 , 1 ,求 M( α , α )和 M( α , β )的值;
(Ⅱ)当 n=4时,设 B是 A的子集,且满足:对于 B中的任意元素 α , β ,当 α , β 相同时, M( α , β )是奇数;当 α , β 不同时, M( α , β )是偶数.求集合 B中元素个数的最大值;
(Ⅲ)给定不小于2的 n,设 B是 A的子集,且满足:对于 B中的任意两个不同的元素 α , β , M( α , β )=0.写出一个集合 B,使其元素个数最多,并说明理由.
如图中,是的中点,,垂足为.求证:.
设函数, (1)若在上存在单调增区间,求实数的取值范围; (2)当时在上的最小值为,求在该区间上的最大值.
已知数列的前项和为,函数(其中,为常数且) (1)若当时,函数取得极大值,求的值; (2)若当时,函数取得极小值,点,都在函数的图像上,(是的导函数),求数列的通项公式.
(本小题满分12分) 如图以点为中心的海里的圆形海域被设为警戒水域, 在点正北海里处有一雷达观测站.在某时刻测得一匀速 直线行驶的船只位于点北偏东且与点相距海 里的点处,经过分钟后又测得该船只已行驶到点北偏 东且与点相距海里的点处,其中,. (Ⅰ)求该船行驶的速度; (Ⅱ)若该船不改变航行方向继续行驶,判断其能否进入警戒水域(说明理由).
.(本小题满分12分) 已知等差数列满足,,为的前项和. (Ⅰ)若,求; (Ⅱ)求数列的前项和.