高中数学

(本小题12分)
在某次高三质检考试后,抽取了九位同学的数学成绩进行统计,下表是九位同学的选择题和填空题的得分情况:

选择题
40
55
50
45
50
40
45
60
40
填空题
12
16

12
16
12
8
12
8

 
(Ⅰ)若这九位同学填空题得分的平均分为,试求表中的值及他们填空题得分的标准差;
(Ⅱ)在(Ⅰ)的条件下,记这九位同学的选择题得分组成的集合为,填空题得分组成的集合为.若同学甲的解答题的得分是,现分别从集合中各任取一个值当作其选择题和填空题的得分,求甲的数学成绩高于分的概率

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题12分)
已知数列满足,等比数列的首项为2,公比为
(Ⅰ)若,问等于数列中的第几项?
(Ⅱ)数列的前项和分别记为的最大值为,当时,试比较的大小

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题12分)
已知中,角的对边分别为
不是最大角,,外接圆的圆心为,半径为
(Ⅰ)求的值;
(Ⅱ)若,求的周长。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。
(1)(本小题满分7分)选修4-2:矩阵与变换
已知向量=,变换T的矩阵为A=,平面上的点P(1,1)在变换T
作用下得到点P′(3,3),求A4.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
直线与圆>0)相交于AB两点,设
P(-1,0),且|PA|:|PB|=1:2,求实数的值
(3)(本小题满分7分)选修4-5:不等式选讲
对于xR,不等式|x-1|+|x-2|≥2+2恒成立,试求2+的最大值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知是函数的一个极值点。
(Ⅰ)求
(Ⅱ)若直线与函数的图象有3个交点,求的取值范围;
(Ⅲ)设=(++(6-+2(),,若
=0有两个零点,且,试探究值的符号

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知,椭圆C的方程为分别为椭圆C的两个焦点,设为椭圆C上一点,存在以为圆心的外切、与内切
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作斜率为的直线与椭圆C相交于AB两点,与轴相交于点D,若
的值;
(Ⅲ)已知真命题:“如果点T()在椭圆上,那么过点T
的椭圆的切线方程为=1.”利用上述结论,解答下面问题:
已知点Q是直线上的动点,过点Q作椭圆C的两条切线QMQN
MN为切点,问直线MN是否过定点?若是,请求出定点坐标;若不是,请说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,由不大于nn)的正有理数排成的数表,质点按
……顺序跳动,
所经过的有理数依次排列构成数列
(Ⅰ)质点从出发,通过抛掷骰子来决定质点的跳动步数,骰子的点数为奇数时,质点往前跳一步(从到达);骰子的点数为偶数时,质点往前跳二步(从到达).
①抛掷骰子二次,质点到达的有理数记为ξ,求Eξ;②求质点恰好到达的概率。
(Ⅱ)试给出的值(不必写出求解过程)。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)如图,在正方体的上底面上叠放三棱柱
,该几何体的正视图与左视图如右图所示.
(Ⅰ)若,求实数的值;
(Ⅱ)在(I)的条件下:
① 证明平面
②求直线与平面所成角的正弦值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知向量
定义函数=
(Ⅰ)求的最小正周期;在所给的坐标系中作出函数的图象
(不要求写出作图过程);
(Ⅱ)若=2,且14≤≤18,求的值

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数,其中为自然对数的底数,
(1)设,求函数的最值;
(2)若对于任意的,都有成立,
的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分12分)直线l 与抛物线y2 = 4x 交于两点ABO 为原点,且= -4.
(I)       求证:直线l 恒过一定点;
(II)     若 4≤| AB | ≤,求直线l斜率k 的取值范围;
(Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ能否等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分12分)设f (x) 是定义在 [-1,1] 上的偶函数,f (x) 与g(x) 的图象关于x =" 1" 对称,且当x Î [2,3] 时,g(x) = a (x-2)-2 (x-2) 3a 为常数).
(Ⅰ)求f (x) 的解析式;
(Ⅱ)若f (x) 在 [0,1] 上是增函数,求实数a 的取值范围;
(Ⅲ)若a Î (-6,6),问能否使f (x) 的最大值为 4?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分12分)某专卖店销售一新款服装,日销售量(单位为件)f (n) 与时间n(1≤n≤30、nÎ N*)的函数关系如下图所示,其中函数f (n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.
(Ⅰ)求f (n) 的表达式,及前m天的销售总数;
(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.
 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分12分)某班有两个课外活动小组,其中第一小组有足球票6张,排球票 4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,和乙从第二小组的10张票中任抽1张.
(Ⅰ)两人都抽到足球票的概率是多少?
(Ⅱ)两人中至少有1人抽到足球票的概率是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分12分)正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC
(Ⅱ)若点 F EA 上且 B1FAE,试求点 F 的坐标;
(Ⅲ)求二面角B1EAC 的正弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学解答题