(满分12分)设f (x) 是定义在 [-1,1] 上的偶函数,f (x) 与g(x) 的图象关于x =" 1" 对称,且当x Î [2,3] 时,g(x) = a (x-2)-2 (x-2) 3(a 为常数). (Ⅰ)求f (x) 的解析式; (Ⅱ)若f (x) 在 [0,1] 上是增函数,求实数a 的取值范围; (Ⅲ)若a Î (-6,6),问能否使f (x) 的最大值为 4?请说明理由.
已知函数 (Ⅰ)当时,求使成立的的值; (Ⅱ)当,求函数在上的最大值;
在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,是的中点. (1)求证:∥平面; (2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
在中,角,,所对的边长分别为,,,. (Ⅰ)若,,求的值; (Ⅱ)若,求的最大值.
已知公差的等差数列满足,且、、成等比数列. (1)求数列的通项公式; (2)数列满足,求数列的前项的和; (3)设,若数列是单调递减数列,求实数的取值范围.
若二次函数满足,,且. (1)求的解析式; (2)若在区间上,不等式恒成立,求实数的取值范围.