已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(I)求椭圆的方程;(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(O为坐标原点),当< 时,求实数的取值范围.
已知,若函数的定义域. (1)求在定义域上的最小值(用表示); (2)记在定义域上的最大值为,最小值,求的最小值.
已知函数为偶函数. (1)求的值; (2)若,当时,求的值域;
已知二次函数的最小值为1,,. (1)求的解析式; (2)若函数在上不是单调函数,求实数的取值范围.
已知集合,集合. (1)求集合; (2)求集合.
棱柱的所有棱长都为2,,平面⊥平面,. (1)证明:; (2)求锐二面角的平面角的余弦值; (3)在直线上是否存在点,使得∥平面,若存在求出的位置.