(本小题满分12分)一个圆锥高h为,侧面展开图是个半圆,求:(1)其母线l与底面半径r之比;(2)锥角;(3)圆锥的表面积
学校为扩大规模,把后山一块不规则的非农业用地规划建成一个矩形运动场地.已知,曲线段是以点为顶点且开口向上的抛物线的一段(如图所示).如果要使矩形的相邻两边分别落在上,且一个顶点落在曲线段上,问应如何规划才能使运动场地面积最大?
已知复数,且,求倾斜角为并经过点的直线与曲线所围成的图形的面积.
已知数列,计算,根据计算结果,猜想的表达式,并用数学归纳法给出证明.
求函数单调区间与极值.
为了求函数,函数,轴围成的曲边三角形的面积,古人想出了两种方案求其近似解(如图):第一次将区间二等分,求出阴影部分矩形面积,记为;第二次将区间三等分,求出阴影部分矩形面积,记为;第三次将区间四等分,求出 ……依此类推,记方案一中,方案二中,其中 1.求 2.求的通项公式,并证明 3.求的通项公式,类比第②步,猜想的取值范围。并由此推出的值(只需直接写出的范围与的值,无须证明) 参考公式: