已知向量=(1,2),=(cosa,sina),设=+t(为实数).(1)若a=,求当||取最小值时实数的值; (2)若⊥,问:是否存在实数,使得向量–和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.(3)若⊥,求实数的取值范围A,并判断当时函数的单调性.
(本小题满分12分)在中,内角的对边分别为且,已知,,. (Ⅰ)求和的值; (Ⅱ)求的值.
(本小题满分12分)某车间要加工某种零件,现将名技工平均分为甲、乙两组,分别标记为号,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:
(Ⅰ)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此比较两组技工的技术水平; (Ⅱ)质检部门从该车间甲、乙两组中各随机抽取名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过件,则称该车间“质量合格”,求该车间“质量合格”的概率.
(本小题满分14分)已知椭圆的左、右焦点分别为、,离心率为,且经过点. (Ⅰ)求椭圆的方程; (Ⅱ)动直线与椭圆相切,点是直线上的两点,且. 求四边形面积; (Ⅲ)过椭圆内一点作两条直线分别交椭圆于点和,设直线与的斜率分别为、,若,试问是否为定值,若是,求出此定值;若不是,说明理由.
(本小题满分13分)设函数,,函数的图象与轴的交点在函数的图象上,且在此点处两曲线有相同的切线. (Ⅰ) 求、的值; (Ⅱ) 设定义在上的函数的最大值为,最小值为,且,求实数的取值范围.
(本小题满分12分)已知数列的前项和为,,,. (Ⅰ) 求证:数列是等比数列; (Ⅱ) 设数列的前项和为,,点在直线上,若不等式对于恒成立,求实数的最大值.