正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上一动点.(1)如图1,当点P在线段OA上运动时(不与点A、O重合) ,PE⊥PB交线段CD于点E,PF⊥CD于点E.①判断线段DF、EF的数量关系,并说明理由;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)如图2,当点P在线段OC上运动时(不与点O、C重合),PE⊥PB交直线CD于点E,PF⊥CD于点E.判断(1)中的结论①、②是否成立?若成立,说明理由;若不成立,写出相应的结论并证明.
设 ζ 为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时, ζ = 0 ;当两条棱平行时, ζ 的值为两条棱之间的距离;当两条棱异面时, ζ = 1 . (1)求概率 P ( ζ = 0 ) ; (2)求 ζ 的分布列,并求其数学期望
已知实数 x , y 满足: x + y < 1 3 , 2 x - y < 1 6 ,
求证: y < 5 16 .
在极坐标中,已知圆 C 经过点 P ( 2 , π 4 ) ,圆心为直线 ρ sin ( θ - π 3 ) = - 3 2 与极轴的交点,求圆 C 的极坐标方程.
已知矩阵 A 的逆矩阵 A - 1 = [ - 1 4 1 2 3 4 - 1 2 ] ,求矩阵 A 的特征值.
如图, A B 是圆 O 的直径, D , E 为圆上位于 A B 异侧的两点,连结 B D 并延长至点 C ,使 B D = D C ,连结 A C , A E , D E . 求证: ∠ E = ∠ C .