某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,,,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为,,.(1)求第一次烧制后恰有一件产品合格的概率; (2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望
已知椭圆的中心为原点,长轴长为,一条准线的方程为. (Ⅰ)求该椭圆的标准方程; (Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于两点(两点异于).求证:直线的斜率为定值.
,,,平面⊥平面,是线段上一点,,. (Ⅰ)证明:⊥平面; (Ⅱ)若,求直线与平面所成角的正弦值.
已知中的内角、、所对的边分别为、、,若,,且. (Ⅰ)求角的大小; (Ⅱ)求函数的取值范围.
已知函数. (Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)讨论函数的单调性.
设是公比大于1的等比数列,为其前项和已知,且,,构成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)令,求数列的前项和.