已知三棱锥中,,平面,分别是直线上的点,且(1) 求二面角平面角的余弦值(2) 当为何值时,平面平面
将一枚骰子先后抛掷两次,观察向上的点数,(1)求点数之和是5的概率;(2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率。
在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.(1)根据茎叶图求这两个班的平均身高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取1同学,求身高至少为176 cm的同学被抽中的概率.
如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)这一组的频数、频率分别是多少?(2) 这组的频率是多少?(3)估计这次环保知识竞赛的及格率(分及以上为及格)
已知函数(1)当时,求的值域;(2)当,时,函数的图象关于对称,求函数的对称轴。(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,且,求的解析式。