已知函数,.(1)函数的零点从小到大排列,记为数列,求的前项和; (2)若在上恒成立,求实数的取值范围;(3)设点是函数与图象的交点,若直线同时与函数,的图象相切于点,且函数,的图象位于直线的两侧,则称直线为函数,的分切线.探究:是否存在实数,使得函数与存在分切线?若存在,求出实数的值,并写出分切线方程;若不存在,请说明理由.
已知某圆的极坐标方程是,求: (1)求圆的普通方程和一个参数方程; (2)圆上所有点中的最大值和最小值.
如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E. (1)求证:△ABE≌△ACD; (2)若AB=6 cm,BC=4 cm,求AE的长.
对某校小学生进行心理障碍测试得到如下的列联表:
将表格填写完整,试说明心理障碍与性别是否有关? 附:
下表是某种产品销售收入与销售量之间的一组数据:
(1)画出散点图;(2)求出回归方程;(3)根据回归方程估计销售量为9吨时的销售收入. (参考公式:
已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-. (1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数; (3)求f(x)在[-3,6]上的最大值与最小值.