(满分12分)正方体ABCD-A1B1C1D1 的棱长为 2,且AC 与BD 交于点O,E 为棱DD1 中点,以A 为原点,建立空间直角坐标系A-xyz,如图所示.(Ⅰ)求证:B1O⊥平面EAC;(Ⅱ)若点 F 在 EA 上且 B1F⊥AE,试求点 F 的坐标;(Ⅲ)求二面角B1-EA-C 的正弦值.
(本小题满分12分)已知函数R). (1)求的单调递增区间; (2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知,b,a,c成等差数列,且,求a的值.
(本小题满分14分)已知,设函数. (1)若在(0, 2)上无极值,求t的值; (2)若存在,使得是在[0, 2]上的最大值,求t的取值范围; (3)若为自然对数的底数)对任意恒成立时m的最大值为1,求t的取 值范围.
(本小题满分13分)如图,在平面直角坐标系xOy中,椭圆的离心率为,过椭圆右焦点作两条互相垂直的弦AB与CD.当直线AB斜率为0时,. (1)求椭圆的方程; (2)求由A,B,C,D四点构成的四边形的面积的取值范围.
(本小题满分12分)已知等比数列{an}的公比,前n项和为Sn,S3=7,且,,成等差数列,数列{bn}的前n项和为Tn,,其中N*. (1)求数列{an}的通项公式; (2)求数列{bn}的通项公式; (3)设,,,求集合C中所有元素之和.
(本小题满分12分)如图1,平面四边形ABCD关于直线AC对称,,,,把△ABD沿BD折起,使二面角为直二面角(如图2). (1)求AD与平面ABC所成的角的余弦值; (2)求二面角的大小的正弦值.