在数列中,,
(1)求数列的通项;
(2)若存在,使得成立,求实数的最小值.
已知函数
(1)当时,求函数f(x)取得最大值和最小值时的值;
(2)设锐角△ABC的内角A、B、C的对应边分别是a,b,c,且a=1,c∈N*,若向量与向量平行,求c的值.
(本小题满分12分)我市某中学一研究性学习小组,在某一高速公路服务区,从小型汽车中按进服务区的先后,每间隔5辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段: ,,,,,,统计后得到如图的频率分布直方图.
(1)此研究性学习小组在采样中,用到的是什么抽样方法?并求这40辆小型汽车车速的众数和中位数的估计值.
(2)从车速在的车辆中任意抽取3辆车,求车速在,内都有车辆的概率.
(3)若从车速在的车辆中任意抽取3辆,求车速在的车辆数的数学期望.
(本小题满分12分)在如图所示的平面直角坐标系中,已知点和点,,且,其中为坐标原点.
(1)若,设点为线段上的动点,求的最小值;
(2)若,向量,,求的最小值及对应的值.
《选修4-4:坐标系与参数方程》已知直线L的参数方程: (t为参数)和圆C的极坐标方程: (θ为参数).
(1)求圆C的直角坐标方程.
(2)判断直线L和圆C的位置关系.
已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求直线的方程.
近几年出现各种食品问题,食品添加剂会引起血脂增高、血压增高、血糖增高等疾病.为了解三高疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
|
患三高疾病 |
不患三高疾病 |
合计 |
男 |
|
6 |
30 |
女 |
|
|
|
合计 |
36 |
|
|
(1)请将如图的列联表补充完整;若用分层抽样的方法在患三高疾病的人群中抽人,其中女性抽多少人?
(2)为了研究三高疾病是否与性别有关,请计算出统计量,并说明你有多大的把握认为三高疾病与性别有关?
下面的临界值表供参考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式,其中)
《选修4-4:坐标系与参数方程》已知直线L的参数方程: (t为参数)和圆C的极坐标方程: (θ为参数).
(1)求圆C的直角坐标方程.
(2)判断直线L和圆C的位置关系.
为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:
班 级 |
甲 |
乙 |
丙 |
丁 |
志愿者人数 |
45 |
60 |
30 |
15 |
为了更进一步了解志愿者的来源,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查.
(1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率;
(2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用表示抽得甲班志愿者的人数,求的分布列和数学期望.