《选修4-5:不等式选讲》已知函数.(1)证明:;(2)求不等式的解集.
在△ABC中,内角A,B,C所对边长分别为,,, .(1)求的最大值及的取值范围;(2)求函数的最值.
(本小题满分14分)已知(Ⅰ)求;(Ⅱ)判断并证明的奇偶性与单调性;(Ⅲ)若对任意的,不等式恒成立,求的取值范围。
(本小题满分12分)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?
(本小题满分12分)设函数,,(Ⅰ)若,求取值范围; (Ⅱ)求的最值,并给出函数取最值时对应的x的值。
(本小题满分12分)已知集合,.(Ⅰ) 若;(Ⅱ) 若A∪B=B,求的取值范围。