设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由。
(本题6分)如图,已知圆锥的轴截面ABC是边长为2的正三角形,O是底面圆心. (Ⅰ)求圆锥的表面积; (Ⅱ)经过圆锥的高AO的中点O¢作平行于圆锥底面的截面,求截得的圆台的体积.
(本题6分)已知直线l的倾斜角为135°,且经过点P(1,1). (Ⅰ)求直线l的方程; (Ⅱ)求点A(3,4)关于直线l的对称点A¢的坐标.
(选修4-5)已知函数, (Ⅰ)当时,解不等式; (Ⅱ)若存在,使得成立,求实数的取值范围.
(选修4-4) 在平面直角坐标系中,圆的参数方程为(为参数),直线经过点,倾斜角. (I)写出圆的标准方程和直线的参数方程; (Ⅱ)设直线与圆相交于两点,求的值.
(本小题满分10分). (选修4-1)如图,在中,,以为直径的圆交于点,设为的中点. (I)求证:直线为圆的切线; (Ⅱ)设交圆于点,求证: