高中数学

已知函数),相邻两对称轴之间的距离为
(1)求函数的解析式;
(2)把函数的图象向右平移个单位,再纵坐标不变横坐标缩短到原来的后得到函数的图象,当 时,求函数的单调递增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知命题,函数的值大于.若是真命题,则命题可以是(  )

A.,使得
B.“”是“函数在区间上有零点”的必要不充分条件
C.是曲线的一条对称轴
D.若,则在曲线上任意一点处的切线的斜率不小于
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数的图象如下图所示,为了得到的图像,可以将的图像 ( )

A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=sinx+cosx.
(1)若f(x)=2f(﹣x),求的值;
(2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=
π时,y有最大值3,当x=6π时,y有最小值-3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin()>Asin()?若存在,求出m值(或范围),若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数,其中,若且图象的两条对称轴间的最近距离是
(1)求函数的解析式;
(2)若是△的三个内角,且,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数的周期及单调递增区间;
(2)在中,三内角A,B,C的对边分别为,已知函数的图象经过点,若,求a的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知点在第二象限,则的一个变化区间是(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)若f(α)=,求sin(π﹣4α)的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,且给定条件p:“”,
(1)求f(x)的最大值及最小值
(2)若又给条件q:“|f(x)﹣m|<2“且p是q的充分条件,求实数m的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数f (x)=Asin(ωx+φ) (A>0,ω>0,|φ|<)在一个周期内的图象如图所示.

(1)求函数的解析式;
(2)设0<x<π,且方程f (x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数(其中为常数,且)的部分图像如图所示.

(1)求函数的解析式
(2)若的值

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数对任意的,都有,若函数,则的值是(  )

A.1 B.或3 C. D.-2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = sin 2 x + a sin x cos x - cos 2 x ,且 f ( π 4 ) = 1 .

(1)求常数a的值及 f ( x ) 的最小值;
(2)当 x 0 , π 2 时,求 f ( x ) 的单调增区间.

  • 更新:2020-08-31
  • 题型:未知
  • 难度:未知

设函数
(Ⅰ)求的最大值,并写出使取最大值时x的集合;
(Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,求的面积的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学多面角及多面角的性质试题