高中数学

如图所示,在直径为BC的半圆中,A是弧BC上一点,正方形PQRS内接于△ABC,若BC=a,∠ABC=θ,设△ABC的面积为Sl,正方形PQRS的面积为S2.

(1)用a,θ表示S1和S2
(2)当a固定,θ变化时,求取得最小值时θ的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = sin π 2 - x sin x - 3 cos 2 x .

(1)求 f ( x ) 的最小正周期和最大值;
(2)讨论 f ( x ) [ π 6 , 2 π 3 ] 上的单调性.

来源:2015年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-27
  • 题型:未知
  • 难度:未知

已知函数,其中R,
(1)当时,求在区间上的最大值与最小值;
(2)若,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

把函数图象上各点向右平移个单位,得到函数的图象,则的最小值为           

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知命题,函数的值大于.若是真命题,则命题可以是(  )

A.,使得
B.“”是“函数在区间上有零点”的必要不充分条件
C.是曲线的一条对称轴
D.若,则在曲线上任意一点处的切线的斜率不小于
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数的图象如下图所示,为了得到的图像,可以将的图像 ( )

A.向右平移个单位长度
B.向右平移个单位长度
C.向左平移个单位长度
D.向左平移个单位长度
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调增区间;
(Ⅲ)若f(α)=,求sin(π﹣4α)的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数,其中,若且图象的两条对称轴间的最近距离是
(1)求函数的解析式;
(2)若是△的三个内角,且,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数对任意的,都有,若函数,则的值是(  )

A.1 B.或3 C. D.-2
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=sinx+cosx.
(1)若f(x)=2f(﹣x),求的值;
(2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于函数f(x)=4sin(2x+),(x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数;
②y=f(x)可改写为y=4cos(2x﹣);
③y=f(x)的图象关于点(﹣,0)对称; 
④y=f(x)的图象关于直线x=对称;
其中正确的序号为     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某同学用“五点法”画函数在某一个周期的图象时,列表并填入了部分数据,如下表:

(1)请求出上表中的,并直接写出函数f(x)的解析式;
(2)将f(x)的图象沿x轴向右平移个单位得到函数g(x),若函数g(x)在(其中)上的值域为,且此时其图象的最高点和最低点分别为P,Q,求夹角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

把函数的图像沿轴向左平移个单位,所得函数的图像关于直线对称,则的最小值为(  )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的部分图象如图所示.

(1)求函数的解析式,并写出 的单调递减区间;
(2)已知的内角分别是A,B,C,角A为锐角,的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求函数的周期及单调递增区间;
(2)在中,三内角A,B,C的对边分别为,已知函数的图象经过点,若,求a的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学多面角及多面角的性质试题