(本题12分)已知定义在区间上的函数的图像关于直线对称,当时,函数.
(1)求的值;
(2)求的表达式;
(3)若关于的方程有解,那么将方程在取某一确定值时所求得的所有解的和记为,求的所有可能取值及相应的的取值范围.
已知函数的部分图象如图所示.
(1)求函数的解析式;
(2)将函数的图象做怎样的平移变换可以得到函数的图象;
(3)若方程上有两个不相等的实数根,求m的取值范围.
某同学用“五点法”画函数在某一个周期的图象时,列表并填入了部分数据,如下表:
(1)请求出上表中的,,,并直接写出函数f(x)的解析式;
(2)将f(x)的图象沿x轴向右平移个单位得到函数g(x),若函数g(x)在(其中)上的值域为,且此时其图象的最高点和最低点分别为P,Q,求与夹角的大小.
(本小题满分13分)某同学用“五点法”画函数()在某一个周期内的图像时,列表并填入的部分数据如下表:
(1)请求出上表中的的值,并写出函数的解析式;
(2)将的图像向右平移个单位得到函数的图像,若函数在区间()上的图像的最高点和最低点分别为,求向量与夹角的大小.
已知函数,
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设在中,内角所对边的边长分别为,且,,
若,求的值。
对于定义域为
的函数
,若存在正常数
,使得
是以
为周期的函数,则称
为余弦周期函数,且称
为其余弦周期.已知
是以
为余弦周期的余弦周期函数,其值域为.设
单调递增,
,
.
(1)验证
是以
为周期的余弦周期函数;
(2)设
.证明对任意
,存在
,使得
;
(3)证明:"
为
在
上得解"的充要条件是"
为方程
在
上有解",并证明对任意
都有
.
已知函数满足
(1)求实数的值以及函数的最小正周期;
(2)记,若函数是偶函数,求实数的值.
(本小题满分12分)在中,边a,b,c的对角分别为A,B,C;且,面积.
(Ⅰ)求a的值;
(Ⅱ)设,将图象上所有点的横坐标变为原来的(纵坐标不变)得到的图象,求的单调增区间.
(本小题满分10分)已知函数,且当时,的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分10分)已知函数,且当时,的最小值为2,
(1)求的单调递增区间;
(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.