(本小题满分13分)某同学用“五点法”画函数()在某一个周期内的图像时,列表并填入的部分数据如下表:
(1)请求出上表中的的值,并写出函数的解析式;(2)将的图像向右平移个单位得到函数的图像,若函数在区间()上的图像的最高点和最低点分别为,求向量与夹角的大小.
(理)正数列的前项和满足:,常数(1)求证:是一个定值;(2)若数列是一个周期数列,求该数列的周期;(3)若数列是一个有理数等差数列,求.
、出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:1、(理)求线段上一点的距离到原点的“距离”;(文)求点、的“距离”;2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点 的“距离”均为 的“圆”方程;(文)求线段上一点的距离到原点的“距离”;3、(理)点、,写出线段的垂直平分线的轨迹方程并画出大致图像.(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点、,,求经过这三个点确定的一个“圆”的方程,并画出大致图像; (说明所给图形小正方形的单位是1)
(文)函数,定义的第阶阶梯函数,其中 ,的各阶梯函数图像的最高点,(1)直接写出不等式的解;(2)求证:所有的点在某条直线上.
(理)函数,定义的第阶阶梯函数,其中 ,的各阶梯函数图像的最高点,最低点(1)直接写出不等式的解;(2)求证:所有的点在某条直线上.(3)求证:点到(2)中的直线的距离是一个定值.
已知直角坐标平面内点,一曲线经过点,且(1)求曲线的方程;(2)设,若,求点的横坐标的取值范围.