对于定义域为 R 的函数 g x ,若存在正常数 T ,使得 cos g x 是以 T 为周期的函数,则称 g x 为余弦周期函数,且称 T 为其余弦周期.已知 f x 是以 T 为余弦周期的余弦周期函数,其值域为.设 f x 单调递增, f 0 = 0 , f T = 4 π . (1)验证 h x = x + sin x 3 是以 6 π 为周期的余弦周期函数; (2)设 a < b .证明对任意 c ∈ f a , f b ,存在 x 0 ∈ a , b ,使得 f x 0 = c ; (3)证明:" u 0 为 cos f x = 1 在 0 , T 上得解"的充要条件是" u 0 + T 为方程 cos f x = 1 在 T , 2 T 上有解",并证明对任意 x ∈ 0 , T 都有 f x + T = f x + f T .
某体育馆拟用运动场的边角地建一个矩形的健身室(如图所示),是一个标出为的正方形地皮,扇形是运动场的一部分,其半径为,矩形就是拟建的健身室,其中分别在和上,在上,设矩形的面积为,. (I)请将表示为的函数,并指出当点在的何处时,该健身室的面积最大,最大面积是多少? (II)由上面函数建立的思想,试求的最大值.
已知函数. (I)求函数的单调递增区间; (II)若关于的方程在上有两个不同的解,求实数的取值范围.
已知函数在区间上有最大值4和最小值1,设. (I)求的值; (II)若不等式在上有解,求实数的取值范围.
已知函数为偶函数,且的最小值是. (I)求; (II)用五点法画一个周期内的图像.
已知函数. (I)求函数的最小值; (II)若,求的值.