高中数学

函数是(  )

A.最小正周期为的奇函数
B.最小正周期为的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,某人在垂直于水平地面的墙面前的点处进行射击训练,已知点到墙面的距离为,某目标点沿墙面上的射线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小(仰角为直线与平面所成的角),若,则的最大值是(    )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 f ( x ) = sin x .若存在 x 1 , x 2 , . . . x m 满足 0 x 1 < x 2 < . . . < x m 6 π ,且 f ( x 1 ) - f ( x 2 ) + f ( x 2 ) - f ( x 3 ) + . . . + f ( x m - 1 ) - f ( x m ) = 12 ( m 2 , m N * ) ,则 m 的最小值为 .

来源:2015年全国普通高等学校招生统一考试文科数学
  • 更新:2021-09-24
  • 题型:未知
  • 难度:未知

关于有以下命题:
①若;②图象与图象相同;③在区间上是减函数;④图象关于点对称。其中正确的命题是           

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知,且函数
(1)设方程内有两个零点,求的值;
(2)若把函数的图像向左平移个单位,再向上平移2个单位,得函数图像,求函数上的单调增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,下列结论:

①最小正周期为π;
②将f(x)的图象向左平移个单位,所得到的函数是偶函数;
③f(0)=1;
④f()<f();
⑤f(x)=-f(-x).
其中正确的是(  )

A.①②③ B.②③④ C.①④⑤ D.②③⑤
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某同学用"五点法"画函数 f ( x ) = A sin ( ω x + φ ) ( ω > 0 , φ < π 2 ) 在某一个周期内的图象时,列表并填入了部分数据,如下表:

image.png

(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数 f ( x ) 的解析式;
(Ⅱ)将 y = f ( x ) 图象上所有点向左平行移动 π 6 个单位长度,得到 y = g ( x ) 图象,求 y = g ( x ) 的图象离原点 O 最近的对称中心.

来源:2015年全国普通高等学校招生统一考试文科数学
  • 更新:2021-09-24
  • 题型:未知
  • 难度:未知


已知函数
(Ⅰ)列表并画出函数上的简图;
(Ⅱ)若,求

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=sinx+cosx.
(1)若f(x)=2f(﹣x),求的值;
(2)求函数F(x)=f(x)•f(﹣x)+f2(x)的最大值和单调递增区间.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

关于函数f(x)=4sin(2x+),(x∈R)有下列命题:
①y=f(x)是以2π为最小正周期的周期函数;
②y=f(x)可改写为y=4cos(2x﹣);
③y=f(x)的图象关于点(﹣,0)对称; 
④y=f(x)的图象关于直线x=对称;
其中正确的序号为     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)设,将函数表示为关于的函数,求的解析式;
(2)对任意,不等式恒成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数
(Ⅰ)求的最大值,并写出使取最大值时x的集合;
(Ⅱ)已知中,角A、B、C的对边分别为a、b、c,若,求的面积的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数)在时有最小值
(Ⅰ)求的值;
(Ⅱ)在中,分别是角所对的边,已知,求角的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设在中,内角所对边的边长分别为,且
,求的值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,直线的图象交点之间的最短距离为
(1)求的解析式及其图象的对称中心;
(2)设的内角的对边分别为,若,
,求的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学多面角及多面角的性质试题