(满分14分) 定义在上的函数同时满足以下条件:
①在上是减函数,在上是增函数;②是偶函数;
③在处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数在上的最小值.
(本小题满分12分)
设函数,曲线在点处的切线方程.
(1)求的解析式,并判断函数的图像是否为中心对称图形?若是,请求其对称中心;否则说明理由。
(2)证明:曲线上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
(3) 将函数的图象向左平移一个单位后与抛物线(为非0常数)的图象有几个交点?(说明理由)
(本小题满分14分)
已知函数,,其中.
(1)若函数是偶函数,求函数在区间上的最小值;
(2)用函数的单调性的定义证明:当时,在区间上为减函数;
(3)当,函数的图象恒在函数图象上方,求实数的取值范围.
(本小题满分12分)
设是实数,,
(1)若函数为奇函数,求的值;
(2)试用定义证明:对于任意,在上为单调递增函数;
(3)若函数为奇函数,且不等式对任意 恒成立,求实数的取值范围。
(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若在上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.