高中数学

设函数 f ( x ) = x 3 + 2 a x 2 + b x + a , g ( x ) = x 2 - 3 x + 2 ,其中 x R a , b 为常数,已知曲线 y = f ( x ) y = g ( x ) 在点 ( 2 , 0 ) 处有相同的切线 l
(Ⅰ)求 a , b 的值,并写出切线 l 的方程;
(Ⅱ)若方程 f ( x ) + g ( x ) = m x 有三个互不相同的实根 0 , x 1 , x 2 ,其中 x 1 < x 2 ,且对任意的 x [ x 1 , x 2 ] , f ( x ) + g ( x ) < m ( x - 1 ) 恒成立,求实数 m 的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若函数上无零点,请你探究函数上的单调性;
(2)设,若对任意的,恒有成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,其中.
(1)若,求函数的定义域和极值;
(2)当时,试确定函数的零点个数,并证明.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数,其中
(1)若在区间上有零点,求实数的取值范围;
(2)设函数,是否存在实数,对任意给定的非零实数,存在唯一的非零实数,使得?若存在,求出的值,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数f(x)=a(x+)﹣|x﹣|(x>0)a∈R.
(1)若a=,求y=f(x)的单调区间;
(2)若关于x的方程f(x)=t有四个不同的解x1,x2,x3,x4,求实数a,t应满足的条件;
(3)在(2)条件下,若x1,x2,x3,x4成等比数列,求t用a表示.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分14分,第1小题6分,第2小题8分)
已知函数的反函数为
(1)若,求实数的值;
(2)若关于的方程在区间内有解,求实数的取值范围;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)当时,写出的单调区间;
(2)当时,求的最小值;
(3)试讨论关于的方程的解的个数.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数f(x)=,若存在实数a,b,c,d,满足f(a)=f(b)=f(c)=f(d),其中0<a<b<c<d,则abcd的取值范围     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,求函数的零点;
(2)若函数有零点,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数的定义域为[2,3],值域为[1,4];设
(1)求a,b的值;
(2)若不等式上恒成立,求实数k的取值范围;
(3)若有三个不同的实数解,求实数k的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数).
(1)若函数有两个零点,求的取值范围;
(2)若函数在区间上各有一个零点,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数,().
(Ⅰ)求函数的递增区间;
(Ⅱ)若函数上有两个不同的零点,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设关于的方程有两个实根,函数.
(1)求的值;
(2)判断在区间的单调性,并加以证明;
(3)若均为正实数,证明:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组解答题