高中数学


某校积极响应《全面健身条例》,把周五下午5:00~6:00定为职工活动时间,并成立了行政和教师两支篮球队,但由于工作性质所限,每月(假设为4周)每支球队只能组织两次活动,且两支球队的活动时间是相互独立的。
(1)求这两支球队每月两次都在同一时间活动的频率;
(2)设这两支球队每月能同时活动的次数为,求随机变量的分布列和数学期望。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设一台机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,一周5个工作日里无故障可获利润10万元,发生一次故障可获利5万元,发生两次故障没有利润,发生三次或三次以上故障就亏损2万元,求一周内平均获利多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级.对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品.
(1)已知甲、乙两种产品每一道工序的加工结
果为A级的概率如表一所示,分别求生产
出的甲、乙产品为一等品的概率P、P
(2)已知一件产品的利润如表二所示,用ξ、
    η分别表示一件甲、乙产品的利润,在
(I)的条件下,求ξ、η的分布列及
Eξ、Eη;
(3)已知生产一件产品需用的工人数和资金额
如表三所示.该工厂有工人40名,可用资.





项目
产品

工人(名)
资金(万元)

8
8

2
10

 

 

    金60万元.设xy分别表示生产甲、乙产







 

    品的数量,在(II)的条件下,xy为何

    值时, 最大?最大值是多少?
(解答时须给出图示)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2009年一项关于16艘轮船的研究中,船的吨位区间位于192吨到3246吨,船员的人数从5人到32人,船员的人数关于船的吨位的回归分析得到如下结果:船员人数=9.1+0.006×吨位.
(1)假定两艘轮船吨位相差1000吨,船员平均人数相差多少?
(2)对于最小的船估计的船员数为多少?对于最大的船估计的船员数是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某公司“咨询热线”电话共有8路外线,经长期统计发现,在8点到10点这段时间内,外线电话同时打入情况如下表所示:

电话同时
打入个数
0
1
2
3
4
5
6
7
8
概率
0.13
0.35
0.27
0.14
0.08
0.02
0.01
0
0

(1)若这段时间内,公司只安排了2位接线员(一个接线员一次只能接一个电话)
①求至少一路电话不能一次接通的概率;
②在一周五个工作日中,如果有三个工作日的这段时间(8点至10点)内至少一路电话不能一次接通,那么公司的形象将受到损害,现用至少一路电话不能一次接通的概率表示公司形象的“损害度”,求上述情况下公司形象的“损害度”.
(2)求一周五个工作日的这段时间(8点至10点)内,电话同时打入数X的均值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若,就会迟到,求张华不迟到的概率;(2)求EX

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求这位射手在三次射击中命中目标的概率;
(2)求这位射手在这次射击比赛中得分的均值.

来源:选修2——3测试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

有三张形状、大小、质地完全一致的卡片,在每张卡片上分别写上0,1,2,现从中任意抽取一张,将其上的数字记作x,然后放回,再抽取一张,将其上的数字记作y,令
(1)求X所取各值的概率;
(2)求随机变量X的均值与方差.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲、乙两名射击运动员,甲射击一次命中环的概率为,乙射击一次命中环的概率为,若他们独立的射击两次,设乙命中环的次数为,则为甲与乙命中环的次数的差的绝对值.求的值及的分布列及数学期望.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有人,会跳舞的有人,现从中选人.设为选出的人中既会唱歌又会跳舞的人数,且
(1)求文娱队的人数;
(2)写出的概率分布列并计算

来源:选修2——3测试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用表示该学生选修的课程门数和没有 选修的课程门数的乘积.
(1)记“函数f(x)=x2+·x为R上的偶函数”为事件A,求事件A的概率;
(2)求的概率分布和数学期望.

来源:概率统计测试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.若袋中共有10个球,
(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望E().

来源:概率统计测试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以ξ和分别表示取出次品和正品的个数.
(1)求的概率分布、期望值及方差;
(2)求的概率分布、期望值及方差.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某地区的一个季节下雨天的概率是0.3,气象台预报天气的准确率为0.8.某厂生产的产品当天怕雨,若下雨而不做处理,每天会损失3 000元,若对当天产品作防雨处理,可使产品不受损失,费用是每天500元.
(1)若该厂任其自然不作防雨处理,写出每天损失的概率分布,并求其平均值;
(2)若该厂完全按气象预报作防雨处理,以表示每天的损失,写出的概率分布.
计算的平均值,并说明按气象预报作防雨处理是否是正确的选择?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学随机思想的发展解答题