一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.若袋中共有10个球,(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望E().
已知曲线C: (t为参数), C:(为参数)。(Ⅰ)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(II)若C上的点P对应的参数为,Q为C上的动点,求中点到直线(t为参数)距离的最大值。
在极坐标系中,直线的方程为,在直角坐标系中,圆的参数方程为.(Ⅰ)判断直线与圆的位置关系;(Ⅱ)设点是曲线上的一个动点,若不等式有解,求的取值范围.
设是互不相等的正数,求证:(Ⅰ)(Ⅱ)
、如图,是的高,是外接圆的直径,圆半径为,,求的值。
(本小题满分12分)设函数.(Ⅰ)若函数在定义域上是单调函数,求的取值范围;(Ⅱ)若,证明对于任意的,不等式.