一个袋中装有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.若袋中共有10个球,(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望E().
已知数列{an}满足an+1=,a1=2,求数列{an}的通项公式.
设数列{an}的前n项和Sn=2an-2n. (1)求a3,a4; (2)证明:{an+1-2an}是等比数列; (3)求{an}的通项公式.
设数列{an}的前n项和为Sn,且(3-m)Sn+2man="m+3" (n∈N*),其中m为常数,且m≠-3,m≠0. (1)求证:{an}是等比数列; (2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1,bn=f(bn-1) (n∈N,n≥2),求证:为等差数列,并求bn.
数列{an}中,a1=2,a2=3,且{anan+1}是以3为公比的等比数列,记bn=a2n-1+a2n (n∈N*). (1)求a3,a4,a5,a6的值; (2)求证:{bn}是等比数列.
数列{an}的前n项和为Sn,且Sn=(an-1). (1)求a1,a2; (2)证明:数列{an}是等比数列; (3)求an及Sn.