某校积极响应《全面健身条例》,把周五下午5:00~6:00定为职工活动时间,并成立了行政和教师两支篮球队,但由于工作性质所限,每月(假设为4周)每支球队只能组织两次活动,且两支球队的活动时间是相互独立的。(1)求这两支球队每月两次都在同一时间活动的频率;(2)设这两支球队每月能同时活动的次数为,求随机变量的分布列和数学期望。
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD. (1)求证:PC⊥BD; (2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值. ①求此时四棱锥E-ABCD的高; ②求二面角A-DE-B的正弦值的大小.
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点. (1)求证:平面PAC⊥平面PBC; (2)若AB=2,AC=1,PA=1,求二面角CPBA的余弦值.
如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°. (1)证明:AA1⊥BD; (2)证明:CC1∥平面A1BD.
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°. (1)求证:OM∥平面PAB; (2)求证:平面PBD⊥平面PAC; (3)当四棱锥P-ABCD的体积等于时,求PB的长.
如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF. (1)求证:BF∥平面ACE; (2)求证:BF⊥BD.