(本小题满分12分)如图,在正四棱柱ABCD—A1B1C1D1中,AA1=AB,点E、M分别为A1B、C1C的中点,过点A1,B,M三点的平面A1BMN交C1D1于点N.(Ⅰ)求证:EM∥平面A1B1C1D1;(Ⅱ)求二面角B—A1N—B1的正切值.
某市质监部门对市场上奶粉进行质量抽检,现将9个进口品牌奶粉的样品编号为1,2,3,4, ,9;6个国产品牌奶粉的样品编号为10,11,12,15,按进口品牌及国产品牌分层进行分层抽样,从其中抽取5个样品进行首轮检验,用表示编号为的样品首轮同时被抽到的概率.(1)求的值;(2)求所有的的和.
已知椭圆的右焦点为,设左顶点为A,上顶点为B且,如图.(1)求椭圆的方程;(2)若,过的直线交椭圆于两点,试确定的取值范围.
已知函数在处取得极小值.(1)若函数的极小值是,求;(2)若函数的极小值不小于,问:是否存在实数,使得函数在上单调递减?若存在,求出的范围;若不存在,说明理由.
如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,,是锐角,且平面ACEF⊥平面ABCD.(1)求证:;(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.
已知求:(1);(2).