高中数学

有甲、乙两个建材厂,都想投标参加某重点建设项目,为了对重点建设项目负责,政府到两建材厂抽样检查,他们从中各取等量的样品检查它们的抗拉强度指数如下:

 
110
120
125
130
135
P
0.1
0.2
0.4
0.1
0.2

100
115
125
130
145
P
0.1
0.2
0.4
0.1
0.2

其中分别表示甲、乙两厂材料的抗拉强度,在使用时要求抗拉强度不低于120的条件下,比较甲、乙两厂材料哪一种稳定性较好.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(1)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(2) ξ 表示依方案乙所需化验次数,求 ξ 的期望.

  • 更新:2022-06-20
  • 题型:未知
  • 难度:未知

设随机变量具有分布P(=k)=,k=1,2,3,4,5,求E(+2)2,V(2-1),-1).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某运动员投篮时命中率p=0.6.
(1)求一次投篮命中次数的期望与方差;
(2)求重复5次投篮时,命中次数的期望与方差.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数
是X.
(1)求随机变量X的概率分布;
(2)求随机变量X的数学期望和方差.

来源:概率统计测试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设离散型随机变量X的概率分布为

X
0
1
2
3
4
P
0.2
0.1
0.1
0.3
m

求:(1)2X+1的概率分布;
(2)|X-1|的概率分布.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(I)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求的分布列及的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本上题满分12分)某高校为了参加“CBA杯”安徽省大学生篮球联赛暨第十届CU—BA安徽省选拔赛,需要在各班选拔预备队员,规定投篮成绩甲级的可作为入围选手,选拔过程中每人投篮5次,若投中3次则确定为乙级,若投中4次及以上则可确定为甲级,一旦投中4次,即终止投篮,已知某班同学小明每次投篮投中的概率是0.6。(I)求小明投篮4次才被确定为乙级的概率; (II)设小明投篮投中次数为X,求X的分布列及期望。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。

来源:2009年广州市高三年级调研测试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某中学在高一开设了数学史等4门不同的选修课,每个学生必须选修,有只能从中选一门。该校高一的3名学生甲、乙、丙对这4门不同的选修课的兴趣相同。(Ⅰ)求3个学生选择了3门不同的选修课的概率;(Ⅱ)求恰有2门选修课这3个学生都没有选择的概率;(Ⅲ)设随机变量为甲、乙、丙这三个学生选修数学史这门课的人数,求的分布列
与数学期望。

来源:北京丰台区20082009学年度第一学期高三期末练习
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

甲从装有编号为1,2,3,4,5的卡片的箱子中任意取一张,乙从装有编号为2,4的卡片的箱子中任意取一张,用分别表示甲、乙取得的卡片上的数字.(1)求概率);(2)记,求的分布列与数学期望.

来源:浙江省2009年高考省教研室第一次抽样测试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.

来源:2009年广州市高三年级调研测试
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题共13分)
  一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收。抽检规定是这样的:一次取一件产品检查,若前三次没有抽查到次品,则用户接收这箱产品,而前三次中只要抽查到次品就停止抽检,并且用户拒绝接收这箱产品。
  (I)求这箱产品被用户拒绝接收的概率;
  (II)记表示抽检的产品件数,求的概率分布列。

来源:2009年高考模拟试题
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知


(2009湖南卷理)(本小题满分12分)  
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.,现在3名工人独立地从中任选一个项目参与建设。          
(I)求他们选择的项目所属类别互不相同的概率;
(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。

来源:2009年高考概率与统计试题详解详析
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知


2009全国卷Ⅱ理(本小题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。
(I)求从甲、乙两组各抽取的人数;     
(II)求从甲组抽取的工人中恰有1名女工人的概率;
(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望。             

来源:2009年高考概率与统计试题详解详析
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学随机思想的发展解答题