一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分。(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分的概率分布列及数学期望。
已知抛物线y=x2,求过点(﹣,﹣2)且与抛物线相切的直线方程.
求下列函数的导数:(1)y=+2x;(2)y=lgx﹣sinx;(3)y=2sinxcosx;(4)y=.
已知函数f(x)=x3,求证:函数在任意区间[a,a+b]上的平均变化率都是正数.
试求过点P(3,5)且与曲线y=x2相切的直线方程.
航天飞机升空后一段时间内,第t s时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t的单位为s.(1)h(0),h(1),h(2)分别表示什么?(2)求第2s内的平均速度;(3)求第2s末的瞬时速度.