(本小题满分12分)学校生活区内建有一块矩形休闲区域,,,为了便于同学们平时休闲散步,学校后勤部门将在这块区域内铺设三条小路,考虑到学校整体规划,要求是的中点,点在边上,点在边上,且如图所示.(1)设,试将的周长表示成的函数关系式,并求出此函数的定义域;(2)经核算,三条路每米铺设费用均为800元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
已知命题p:“”;命题q:“”.若命题“”是真命题,求实数a的取值范围.
已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;
已知函数,请用定义证明在上为减函数.
如图,三棱柱的所有棱长都为,且平面,为中点.(Ⅰ)求证:面;(Ⅱ)求二面角的大小的余弦值;(Ⅲ)求点到平面的距离.
设椭圆的左焦点为,直线与轴交于点,过点且倾斜角为30°的直线交椭圆于两点.(Ⅰ)求直线和椭圆的方程;(Ⅱ)求证:点在以线段为直径的圆上;(Ⅲ)在直线上有两个不重合的动点,以为直径且过点的所有圆中,求面积最小的圆的半径长.