设随机变量具有分布P(=k)=,k=1,2,3,4,5,求E(+2)2,V(2-1),(-1).
中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题.若某地区2012年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2013年开始到2022年每年人口比上年增加万人,从2023年开始到2032年每年人口为上一年的99%.(1)求实施新政策后第年的人口总数的表达式(注:2013年为第一年);(2)若新政策实施后的2013年到2032年人口平均值超过49万,则需调整政策,否则继续实施.问到2032年后是否需要调整政策?
在如图所示的几何体中,四边形ABCD为正方形,为等腰直角三角形,,且.(1)证明:平面平面.(2)求直线EC与平面BED所成角的正弦值.
学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):(1)指出这组数据的众数和中位数;(2)若满意度不低于98分,则评价该教师为“优秀”.求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;(3)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记表示抽到评价该教师为“优秀”的人数,求的分布列及数学期望.
已知向量,,(1)求函数的最小正周期;(2)在中,角A,B,C的对边分别为a,b,c,且满足,若,求角的值.
已知函数,且的解集为.(1)求的值;(2)已知都是正数,且,求证: