(本小题共13分) 一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收。抽检规定是这样的:一次取一件产品检查,若前三次没有抽查到次品,则用户接收这箱产品,而前三次中只要抽查到次品就停止抽检,并且用户拒绝接收这箱产品。 (I)求这箱产品被用户拒绝接收的概率; (II)记表示抽检的产品件数,求的概率分布列。
选修4—1:几何证明选讲: 如图:如图E、F、G、H为凸四边形ABCD中AC、BD、AD、DC的中点,∠ABC=∠ADC。 (1)求证:∠ADC=∠GEH; (2)求证:E、F、G、H四点共圆; (3)求证:∠AEF=∠ACB-∠ACD
(本小题12分) 已知函数f(x)=x-(2a+1)x+3a(a+2)x+,其中a为实数。 (1)当a=-1时,求函数y=f(x)在[0,6]上的最大值与最小值; (2)当函数y=f(x)的图像在(0,6)上与x轴有唯一的公共点时,求实数a的取值范围。
(本小题满分12分) 已知函数f(x)=(x∈R),P1(x1,y1),P2(x2,y2)是函数y=f(x)图像上两点,且线段P1P2中点P的横坐标为。 (1)求证P的纵坐标为定值; (2)若数列{}的通项公式为=f()(m∈N,n=1,2,3,…,m),求数列{}的前m项和; (3)若m∈N时,不等式<横成立,求实数a的取值范围。
(本小题12分)如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E是MN的中点。 (1)求证:平面AEC⊥平面AMN; (2)求二面角M-AC-N的余弦值。
(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4, (1)求a、b、c的值; (2)求函数的递减区间。