(2009湖南卷理)(本小题满分12分) 为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.、、,现在3名工人独立地从中任选一个项目参与建设。 (I)求他们选择的项目所属类别互不相同的概率; (II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。
(本小题满分14分) 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F. (1)证明 PA//平面EDB; (2)证明PB⊥平面EFD; (3)求二面角C-PB-D的大小.
(本小题满分14分) 如图所示,在棱长为2的正方体中,、分别为、的 中点. (1)求证:; (2)求三棱锥的体积.
(本小题满分12分) 已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示. (1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据; (2)求该四棱锥的侧面积.
(本小题满分12分) (1) (2)
本题满分14分) 设函数. (1)若,求函数的极值; (2)若,试确定的单调性; (3)记,且在上的最大值为M,证明:.