(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.
已知动圆过定点,且在轴上截得的弦长. (Ⅰ)求动圆圆心的轨迹方程; (Ⅱ)若过点的直线交圆心的轨迹于点,,且,求直线的方程.
如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,. (1)求证:平面; (2)求平面与平面所成锐二面角的余弦值; (3)求直线与平面所成角的余弦值.
如图所示,几何体中,为正三角形,⊥, ,. (Ⅰ)在线段上找一点,使平面,并证明; (Ⅱ)求证:面面.
如图,四棱锥的底面是边长为2的菱形,.已知. (Ⅰ)证明:; (Ⅱ)求三棱锥的体积.
(1)已知两直线,当⊥时,求的值; (2)求经过的交点且平行于直线的直线.