某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.(1)求这位射手在三次射击中命中目标的概率;(2)求这位射手在这次射击比赛中得分的均值.
命题p:关于x的不等式,对一切恒成立;命题q:函是增函数.若p或q为真,p且q为假,求实数a的取值范围.
设函数,其中a为正实数. (l)若x=0是函数的极值点,讨论函数的单调性; (2)若在上无最小值,且在上是单调增函数,求a的取值范 围;并由此判断曲线与曲线在交点个数.
已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为. (l)求的值; (2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.
已知定义域为R的函数是奇函数. (1)求,的值; (2)证明函数的单调性.
已知函数 (l)求函数的最小正周期和最大值; (2)求函数在上的单调递减区间.