如图,已知三棱柱 ABC- A 1 B 1 C 1的底面是正三角形,侧面 BB 1 C 1 C是矩形, M, N分别为 BC, B 1 C 1的中点, P为 AM上一点.过 B 1 C 1和 P的平面交 AB于 E,交 AC于 F.
(1)证明: AA 1// MN,且平面 A 1 AMN⊥平面 EB 1 C 1 F;
(2)设 O为△ A 1 B 1 C 1的中心,若 AO= AB=6, AO//平面 EB 1 C 1 F,且∠ MPN= π 3 ,求四棱锥 B- EB 1 C 1 F的体积.
(本小题满分13分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数. (Ⅰ)当时,求函数的表达式; (Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位: 辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
(本小题满分13分)已知数列满足,其中N*. (Ⅰ)设,求证:数列是等差数列,并求出的通项公式; (Ⅱ)设,数列的前项和为,是否存在正整数,使得于N*恒成立,若存在,求出的最小值,若不存在,请说明
(本小题满分12分)如图,在底面为菱形的四棱锥中,,为的中点,, (1)求证:平面 (2)求与面所成角的正弦值
(本小题满分12分)已知二次函数,若,且对任意实数均有成立,设 (1)当时,为单调函数,求实数的范围 (2)当时,恒成立,求实数的范围.
(本小题满分12分)已知向量,=,函数, (1)求函数f(x)的解析式及其单调递增区间; (2)当x∈时,求函数f(x)的值域.