(本小题满分12分)设函数的单调减区间是(1,2)⑴求的解析式;⑵若对任意的,关于的不等式在时有解,求实数的取值范围.
(本小题满分10分)已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点P(4,m)到焦点的距离为6.(Ⅰ)求抛物线C的方程;(Ⅱ)若抛物线C与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
选修4-5:不等式选讲已知f(x)=x2-x+c,设x1,x2(0,1),且x1≠x2,求证:|f(x1)-f(x2)|<.
选修4—4:坐标系与参数方程极坐标系中,求圆=上的点到直线cos(=1的距离的取值范围.
选修4-1:几何证明选讲如图,在Rt⊿ABC中,AB=BC,以AB为直径的⊙O交AC于D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:CE2=EFEA.
已知各项均为正数的数列{an}满足2a2n+1+3an+1an-2a2n=0(n)且a3+是a2,a4的等差中项,数列{bn}的前n项和Sn=n2(1)求数列{an}与{bn}的通项公式;(2)若Tn=,求证:Tn<(3)若cn=-,T/n=c1+c2+…+cn,求使T/n+n2n+1>125成立的正整数n的最小值