如图,已知平面四边形中,为的中点,,,且.将此平面四边形沿折成直二面角,连接,设中点为.(1)证明:平面平面;(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.(3)求直线与平面所成角的正弦值.
小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1))网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为. (1)确定的值,并补全频率分布直方图(图(2)). (2)为进一步了解这名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设为选取的人中“网购红人”的人数,求的分布列和数学期望.
设,而. (1)若最大,求能取到的最小正数值. (2)对(1)中的,若且,求.
设是一个自然数,是的各位数字的平方和,定义数列:是自然数,(,). (1)求,; (2)若,求证:; (3)求证:存在,使得.
已知椭圆的一个焦点为,且离心率为. (1)求椭圆方程; (2)过点且斜率为的直线与椭圆交于两点,点关于轴的对称点为,求△面积的最大值.
已知,函数,. (Ⅰ)若曲线与曲线在它们的交点处的切线互相垂直,求,的值; (Ⅱ)设,若对任意的,且,都有,求的取值范围.