如图,已知平面四边形中,为的中点,,,且.将此平面四边形沿折成直二面角,连接,设中点为.(1)证明:平面平面;(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.(3)求直线与平面所成角的正弦值.
如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)平面MNC与平面MAC夹角的余弦值.
解关于x的不等式:().
函数,数列,满足0<<1, ,数列满足,(Ⅰ)求函数的单调区间;(Ⅱ)求证:0<<<1;(Ⅲ)若且<,则当n≥2时,求证:>
已知函数.(Ⅰ)求的单调区间和极值;(Ⅱ)当时,不等式恒成立,求的范围.
斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.