如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,, 是中点.(1)证明:平面平面;(2)求平面与平面所成锐二面角的余弦值.
已知等比数列及等差数列,其中,公差,将这两个数列对应项相加得到一个新的数列1,1,2,…,求这个新数列的前10项之和
设等差数列的前n项和为;设,问是否可能为一与n无关的常数?若不存在,说明理由.若存在,求出所有这样的数列的通项公式.
已知数列成等差数列,表示它的前项和,且,.⑴求数列的通项公式;⑵数列中,从第几项开始(含此项)以后各项均为负数?
、已知数列的前项和满足.(1) 写出数列的前三项;(2) 求证数列为等比数列,并求出的通项公式.
设数列{an}是公差不为零的等差数列,Sn是数列{an}的前n项和,且=9S2,S4=4S2,求数列的通项公式.