·福建理)如图,在四棱柱中,侧棱底面,(1)求证:平面(2)若直线与平面所成角的正弦值为,求的值(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式。(直接写出答案,不必说明理由)
已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求 (Ⅰ)BC边上的中线AD所在的直线方程; (Ⅱ)△ABC的面积。
已知定义域为的函数是奇函数. (Ⅰ)求实数的值. (Ⅱ)用定义证明:在上是减函数. (III)已知不等式恒成立, 求实数的取值范围.
如图,用长为12m的铁丝弯成下部为矩形,上部为半圆形的框架窗户,若半圆半径为x。 (1)求此框架围成的面积y与x的函数式y=f(x),并写出它的定义域。 (2)半圆的半径是多长时,窗户透光的面积最大?
二次函数满足且. 1.求的解析式; 2.在区间上,的图象恒在的图象上方,试确定实数m的范围.
已知函数,,其中,设. (1)求的定义域,并判断奇偶性,说明理由; (2)若,求使成立的x的集合.