为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.
(1)求该校报考飞行员的总人数;
(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.
(本题14分)张老师居住在某城镇的A处,准备开车到学校B处上班。若该地各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图。(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为)。(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望。
(本小题满分12分)某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立.
(1)求m,n;
(2)设X为该同学取得优秀成绩的课程门数,求EX.
(本小题满分12分)在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为、,设为坐标原点,点的坐标为,记.
(I)求随机变量的最大值,并求事件“取得最大值”的概率;
(2)求随机变量的分布列和数学期望.
(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图),
(Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
(本小题满分12分)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50度至350度之间,频率分布直方图如图所示.
(1)根据直方图求的值,并估计该小区100户居民的月均用电量(同一组中的数据用该组区间的中点值作代表);
(2)从该小区已抽取的100户居民中,随机抽取月用电量超过250度的3户,参加节约用电知识普及讲座,其中恰有户月用电量超过300度,求的分布列及期望.
(本小题满分10分)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为。现有甲、乙两人从袋中轮流、不放回地摸取1球,甲先取,乙后取,然后甲再取……直到袋中的球取完即终止。若摸出白球,则记2分,若摸出黑球,则记1分。每个球在每一次被取出的机会是等可能的。用x表示甲,乙最终得分差的绝对值.
(1)求袋中原有白球的个数;
(2)求随机变量x的概率分布列及期望Ex.
(本小题满分12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙公司和丙公司面试的概率均为p,,且三个公司是否让其面试是相互独立的.记为该毕业生得到面试的公司个数,若P(=0)=.
(1)求p的值:
(2)求随机变量的分布列及数学期望.
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 |
分组 |
低碳族 的人数 |
占本组 的频率 |
1 |
[25,30) |
120 |
0.6 |
2 |
[30,35) |
195 |
P |
3 |
[35,40) |
100 |
0.5 |
4 |
[40,45) |
a |
0.4 |
5 |
[45,50) |
30 |
0.3 |
6 |
[50,55) |
15 |
0.3 |
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为元,此鱼的市场价格与鱼池的产量均具有随机性,且互不影响,其具体情况如下表:
鱼池产量() |
|
鱼的市场价格(元/) |
||||
概率 |
|
概率 |
(1)设表示在这个鱼池养殖季这种鱼的利润,求的分布列和期望;
(2)若在这个鱼池中连续季养殖这种鱼,求这季中至少有季的利润不少于元的概率.
甲、乙两名篮球运动员,各自的投篮命中率分别为与,如果每人投篮两次.
(Ⅰ)求甲比乙少投进一次的概率;
(Ⅱ)若投进一个球得分,未投进得分,求两人得分之和的分布列及数学期望.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
(本小题满分12分)甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为,乙与丙击中目标的概率分别为,每人是否击中目标是相互独立的.记目标被击中的次数为,且的分布列如下表:
(Ⅰ)求的值;
(Ⅱ)求的数学期望.
某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).
(Ⅰ)求样本容量n和频率分布直方图中x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.