某中学举行了一次“环保知识竞赛”活动.为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).(Ⅰ)求样本容量n和频率分布直方图中x、y的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望.
(本小题满分12分) 设函数 (1)若函数在内没有极值点,求的取值范围。 (2)若对任意的,不等式上恒成立,求实数的取值范围。
(本小题满分12分)数列中, (1)求的通项公式;(2)设,求
(本小题满分10分) 已知若,且的图象相邻的对称轴间的距离等于 (1)求的值;(2)在中,分别是角A,B,C的对边,,且,求的最小值。
如图所示,平面ABC,CE//PA,PA=2CE=2。 (1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分) 若数列满足:是常数),则称数列为二阶线性递推数列,且定义方程为数列的特征方程,方程的根称为特征根; 数列的通项公式均可用特征根求得: ①若方程有两相异实根,则数列通项可以写成,(其中是待定常数); ②若方程有两相同实根,则数列通项可以写成,(其中是待定常数); 再利用可求得,进而求得. 根据上述结论求下列问题: (1)当,()时,求数列的通项公式; (2)当,()时,求数列的通项公式; (3)当,()时,记,若能被数整除,求所有满足条件的正整数的取值集合.