为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.
已知数列满足,试证明: (1)当时,有; (2).
如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且. (1)求证:平面⊥平面; (2)求平面和平面所成锐二面角的余弦值.
在直角三角形中,是边上的高,,,分别为垂足,求证:.
(本小题满分16分) 已知函数,其中. (1)当时,求函数在处的切线方程; (2)若函数在区间(1,2)上不是单调函数,试求的取值范围; (3)已知,如果存在,使得函数在处取得最小值,试求的最大值.
(本小题满分16分) 已知数列是等差数列,数列是等比数列,且对任意的,都有. (1)若的首项为4,公比为2,求数列的前项和; (2)若. ①求数列与的通项公式; ②试探究:数列中是否存在某一项,它可以表示为该数列中其它项的和?若存在,请求出该项;若不存在,请说明理由.