将函数的图象向右平移个单位, 再将所得图象上各点横坐标伸长到原来的3倍(纵坐标不变), 再将所得图象上各点纵坐标伸长为原来的4倍(横坐标不变), 得到函数的图象;(Ⅰ)写出函数的解析式;(Ⅱ)求此函数的对称中心的坐标;(Ⅲ)用五点作图法作出这个函数在一个周期内的图象.
如图所示的七面体是由三棱台ABC – A1B1C1和四棱锥D- AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面ABCD,BB1=2A1B1=2.(I)求证:平面AA1C1C1⊥平面BB1D;(Ⅱ)求二面角A –A1D—C1的余弦值.
某班同学利用节假日进行社会实践,在25~ 55岁的人群中随机抽取n人进行了一次关于生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”.根据调查结果得到如下统计表和各年龄段人数频率分布直方图:(I)补全频率分布直方图并求n,a,p的值;(Ⅱ)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁年龄段的人数为X,求X的分布列和数学期望.
在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.(I)求角A的大小;(Ⅱ)若a=4,求△ABC面积的最大值.
设函数.(1)作出函数的图象;(2)若不等式的解集为,求值.
已知直线的参数方程为,(为参数,为倾斜角,且)与曲线=1交于两点.(I)写出直线的一般方程及直线通过的定点的坐标;(Ⅱ)求的最大值。