(本小题满分12分)某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立.(1)求m,n;(2)设X为该同学取得优秀成绩的课程门数,求EX.
设实部为正数的复数,满足,且复数在复平面上对应的点在第一、三象限的角平分线上. (1)求复数; (2)若为纯虚数, 求实数的值.
已知二次函数,及函数。 关于的不等式的解集为,其中为正常数。 (1)求的值; (2)R如何取值时,函数存在极值点,并求出极值点; (3)若,且,求证:。
已知函数, (1)若x=1时取得极值,求实数的值; (2)当时,求在上的最小值; (3)若对任意,直线都不是曲线的切线,求实数的取值范围。
已知函数,其中,. (1)当时,求曲线在点处的切线方程; (2)求的单调区间.(要写推理过程)
设函数对任意实数x 、y都有, (1)求的值; (2)若,求、、的值; (3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。