张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.
(1)若,就会迟到,求张华不迟到的概率;
(2)求EX.
(本小题满分12分)某军区新兵步枪射击个人平均成绩(单位:环)服从正态分布,从这些个人平均成绩中随机抽取个,得到如下频数分布表:
频数 |
(Ⅰ)求和的值(用样本数学期望、方差代替总体数学期望、方差);
(Ⅱ)如果这个军区有新兵名,试估计这个军区新兵步枪射击个人平均成绩在区间上的人数
[参考数据:,若,则,,].
一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分别为1,2,3,4,从袋中任意取出3个球.
(Ⅰ)求取出的3个球编号都不相同的概率;
(Ⅱ)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组
区间是:.
(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,得到成绩分布的频率分布直方图如图:
(1)若规定60分以上(包括60分)为合格,计算高一年级这次知识竞赛的合格率;
(2)将上述调查所得到的频率视为概率.现在从该校大量高一学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的合格人数为.若每次抽取的结果是相互独立的,求的分布列和期望;
|
高一 |
高二 |
合计 |
合格人数 |
|
|
|
不合格人数 |
|
|
|
合计 |
|
|
|
(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系” .
(本小题满分10分)甲、乙、丙三位同学商量高考后外出旅游,甲提议去古都西安,乙提议去海上花园厦门,丙表示随意.最终,三人商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上,则甲得一分、乙得零分;若反面朝上,则乙得一分、甲得零分,先得4分者获胜.三人均执行胜者的提议.若记所需抛掷硬币的次数为X.
(1)求的概率;
(2)求X的分布列和数学期望.
2015年春节期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔辆就抽取一辆的抽样方法,抽取了名驾驶员进行调查,将他们在某段高速公路上的车速(km/t)分成6段:,,,,,后得到如图4的频率分布直方图.问:
(1)该公司在调查取样中,用到的是什么抽样方法?
(2)求这40辆小型汽车车速的众数和中位数的估计值;
(3)若从车速在中的车辆中任取2辆,求抽出的这两辆车中速度在中的车辆数的分布列及其数学期望.
某班同学利用五一节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 |
分组 |
低碳族 的人数 |
占本组 的频率 |
1 |
[25,30) |
120 |
0.6 |
2 |
[30,35) |
195 |
P |
3 |
[35,40) |
100 |
0.5 |
4 |
[40,45) |
a |
0.4 |
5 |
[45,50) |
30 |
0.3 |
6 |
[50,55) |
15 |
0.3 |
(1)请补全频率分布直方图,并求n、a、p的值;
(2)在所得样本中,从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和数学期望EX.
某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为元,此鱼的市场价格与鱼池的产量均具有随机性,且互不影响,其具体情况如下表:
鱼池产量() |
|
鱼的市场价格(元/) |
||||
概率 |
|
概率 |
(1)设表示在这个鱼池养殖季这种鱼的利润,求的分布列和期望;
(2)若在这个鱼池中连续季养殖这种鱼,求这季中至少有季的利润不少于元的概率.
甲、乙两名篮球运动员,各自的投篮命中率分别为与,如果每人投篮两次.
(Ⅰ)求甲比乙少投进一次的概率;
(Ⅱ)若投进一个球得分,未投进得分,求两人得分之和的分布列及数学期望.
(本小题满分12分)甲、乙两袋中各装有大小相同的小球个,其中甲袋中红色、黑色、白色小球的个数分别为、、,乙袋中红色、黑色、白色小球的个数均为,某人用左右手分别从甲、乙两袋中取球.
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量,求的分布列和数学期望.
(本小题满分12分)甲、乙、丙三人射击同一目标,各射击一次,已知甲击中目标的概率为,乙与丙击中目标的概率分别为,每人是否击中目标是相互独立的.记目标被击中的次数为,且的分布列如下表:
(Ⅰ)求的值;
(Ⅱ)求的数学期望.