2015年春节期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中,按进服务区的先后每间隔辆就抽取一辆的抽样方法,抽取了名驾驶员进行调查,将他们在某段高速公路上的车速(km/t)分成6段:,,,,,后得到如图4的频率分布直方图.问:(1)该公司在调查取样中,用到的是什么抽样方法?(2)求这40辆小型汽车车速的众数和中位数的估计值;(3)若从车速在中的车辆中任取2辆,求抽出的这两辆车中速度在中的车辆数的分布列及其数学期望.
(12分)已知函数 (1)在给定的直角坐标系内画出的图象; (2)写出的单调递增区间(不需要证明); (3)写出的最大值和最小值(不需要证明).
(10分)已知集合,,. (1) 求,; (2) 若,求的取值范围.
(10分) 求函数的定义域.
已知椭圆C:,过点且不与坐标轴垂直的直线交椭圆于两点,设点关于轴的对称点为, (1)求证:直线过轴上一定点,并求出此定点坐标; (2)求:面积的取值范围。
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4, BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点 (1)证明:直线EE1∥平面FCC1 (2)求:二面角B-FC1-C的余弦值.