张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.(1)若,就会迟到,求张华不迟到的概率;(2)求EX.
已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().(Ⅰ)若= 30,求;(Ⅱ)试写出a30关于的关系式,并求a30的取值范围;(Ⅲ)续写已知数列,可以使得是公差为3的等差数列,请你依次类推,把已知数列推广为无穷数列,试写出关于的关系式(N);(Ⅳ)在(Ⅲ)条件下,且,试用表示此数列的前100项和
经过长期的观测得到:在交通繁忙时段,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为.(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
已知曲线过点P(1,3),且在点P处的切线恰好与直线垂直.求 (Ⅰ) 常数的值; (Ⅱ)的单调区间.
如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.(1)求异面直线BE与AC所成角的余弦值;(2)求二面角A-BE-C的余弦值.
已知p:≤2; q:≤0(m>0),若是的充分而不必要条件,求实数m的取值范围.